
Running and tuning OpenBSD network servers

in a production environment

Philipp Bühler

sysfive.com GmbH

pb@sysfive.com

Henning Brauer

BS Web Services

hb@bsws.de

October 8, 2002

Abstract

Heavily loaded network servers can experience
resource exhastion. At best, resource exhaus-
tion will slow server response, but left uncor-
rected, it can result in a crash of the server.

In order to understand and prevent such sit-
uations, a knowledge of the internal operation
of the operating system is required, especially
how memory management works.

This paper will provide an understanding of
the memory management of OpenBSD, how to
monitor the current status of the system, why
crashes occur and how to prevent them.

1 Motivation

Our main motivation for this paper was
the lack of comprehensive documentation
about tuning network servers running under
OpenBSD [Ope02], especially with regard to
the memory usage of the networking code in
the kernel.

Either one can get general information, or is
“left alone” with the source code. This paper
outlines how to deal with these issues, with-
out reading the source code. At least one does
not need to start in “nowhere-land” and dig
through virtually everything.

This paper aims to give a deeper understand-
ing on how the kernel handles connections and
interacts with userland applications like the
Apache webserver.

2 Resource Exhaustions

Running a publicly accessible server can always
lead to unexpected problems. Typically it hap-
pens that resources get exhausted. There are
numerous reasons for this, including:

Low Budget There’s not enough money to
buy “enough” hardware which would run
an untuned OS.

Peaks Overload situations which can be ex-
pected (e. g. special use) or not (e. g. get-
ting “slashdotted”).

DoS Denial-of-Service by attackers flooding
the server.

No matter what reason leads to an exhaustion,
there are also different types of resources which
can suffer from such a situation. We briefly
show common types and countermeasures. Af-
terwards we go into detail about memory ex-
haustion.

2.1 I/O Exhaustion

It’s very typical for network servers to suffer in
this area. Often people just add more CPU
to “help” a slowly reacting server, but this
wouldn’t help in such a case.

Usually one can detect such an exhaustion by
using vmstat(8) or systat(8). Detailed usage
is shown in Section 5.1 There are also numer-
ous I/O “bottlenecks” possible, but one typical
indication is the CPU being mostly idle and
blocked processes waiting for resources. Fur-
ther distinctions can be made:

Disk

The process is waiting for blocks from (or to)
the disk and cannot run on the CPU, even if
the CPU is idle. This case could be resolved by
moving from IDE to SCSI, and/or using RAID
technology. If repetitive writes/reads are being
done an increase of the filesystem-cache could
also help 1. Filesystem-cache can be configured
with the kernel option BUFCACHEPERCENT2.

NIC

Choosing the right network card is important
for busy servers. There are lots of low-end mod-
els like the whole Realtek range. These cards
are relatively dumb themselves. On the other
hand, there are chipsets with more intelligence.
DEC’s 21143, supported by the dc(4) driver,
and Intel’s newer chipsets, supported by the
fxp(4) driver, have been proven to work well in
high-load circumstances.

Low-end cards usually generate an interrupt for
every packet received, which leads to the prob-
lems we describe in the next subsection. By us-
ing better cards, like the mentioned DEC and
Intel ones, packets are getting combined, thus
reducing the amount of interrupts.

Another important point is the physical media
interface, e. g. sqphy(4). Noise and distortion
is a normal part of network communications,
a good PHY will do a better job of extracting
the data from the noise on the wire than a poor
PHY will, reducing the number of network re-
transmissions required.

It might be a good idea to use Gigabit cards,
even when running 100 MBit/s only. They are
obviously built for much higher packet rates
(and this is the real problem, not bandwidth)
than FastEthernet ones, thus have more own
intelligence and deal better with high loads.

1Though this has implications on the KVM, see the
appropriate section

2for most kernel configurations, see options(4) and
config(8).

IRQ

Every interrupt requires a context switch, from
the process running when the IRQ took place,
to the interrupt handler. As a number of things
must be done upon entering the interrupt han-
dler, a large quantity of interrupts can result
in excess time required for context switching.
One non-obvious way to reduce this load is to
share interrupts between the network adapters,
something permitted on the PCI bus. As many
people are not even aware of the the possibility
of interrupt sharing, and the benefits are not
obvious, let’s look at this a little closer.

With separate adapters on separate interrupt
lines, when the first interrupt comes in, a con-
text switch to the interrupt handler takes place.
If another interrupt comes in from the other
adapter while the first interrupt is still being
handled, it will either interrupt the first han-
dler, or be delayed until the first handler has
completed, depending on priority, but regard-
less, two additional context switches will take
place – one into the second handler, one back
out.

In the case of the PCI and EISA busses, in-
terrupts are level triggered, not edge triggered,
which makes interrupt sharing possible. As
long as the interrupt line is held active, a device
needs servicing, even if the first device which
triggered the interrupt has already been ser-
viced. So, in this case, when the first adapter
triggers the interrupt, there will be a context
switch to the handler. Before the handler re-
turns, it will see if any other devices need ser-
vicing, before doing a context switch back to
the previous process.

In a busy environment, when many devices are
needing service, saving these context switches
can significantly improve performance by per-
mitting the processor to spend more time pro-
cessing data, rather than switching between
tasks. In fact, in a very high load situation,
it may be desireable to switch the adapters
and drivers from an interrupt driven mode to a
polling mode, though this is not supported on
OpenBSD at this time.

2.2 CPU Exhaustion

Of course the CPU can be overloaded also while
other resources are still fine. Besides buying
more CPU power, which is not always possible,
there are other ways to resolve this problem.
Most common cases for this are:

CGI Excessive usage of CGI scripts, usually
written in interpreter languages like PHP
or Perl. Better (resource-wise) coding
can help, as well as using modules like
mod perl3 to reduce load.

RDBM Usually those CGI scrips use a
database. Optimization of the connec-
tions and queries (Indexing, ..) is one way.
There is also the complete offloading of the
database to a different machine 4.

SSL Especially e-commerce systems or online
banking sites suffer here. OpenBSD sup-
ports hardware-accelerators 5. Typical
cryptographic routines used for SSL/TLS
can be offloaded to such cards in a trans-
parent manner, thus freeing CPU time for
processing requests.

3 Memory Exhaustion

Another case of overloading can be the exhaus-
tion of memory resources. Also the speed of
the allocator for memory areas has significant
influence on the overall performance of the sys-
tem.

3.1 Virtual Memory (VM)

VM is comprised of the physical RAM and pos-
sible swap space(s). Processes are loaded into
this area and use it for their data structures.
While the kernel doesn’t really care about the
current location of the process’ memory space

3This can have security implications, but this is an-
other story.

4This could be unfeasible due to an already over-
loaded network or due to budget constraints.

5crypto(4)

(or address space) it is recommended that espe-
cially the most active tasks (like the webserver
application) never be swapped out or even sub-
jected to paging.

With regard to reliability it’s not critical if
the amount of physical RAM is exhausted and
heavy paging occurs, but performance-wise this
should not happen. The paging could compete
for Disk I/O with the server task, thus slow-
ing down the general performance of the server.
And, naturally, harddisks are slower than RAM
by magnitudes.

It’s most likely that countermeasures are taken
after the server starts heavy paging, but it
could happen that also the swap space, and
thus the whole VM, is exhausted. If this oc-
curs, sooner or later the machine will crash.

Even if one doesn’t plan for the server starting
to page out memory from RAM to swap, there
should be some swap space. This prevents a
direct crash, if the VM is exhausted. If swap
is being used, one has to determine if this was
a one-time-only peak, or if there is a general
increase of usage on the paging server. In the
latter case one should upgrade RAM as soon as
possible.

In general it’s good practice to monitor the VM
usage, especially to track down when the swap
space is being touched. See section 5 for details.

3.2 Kernel Virtual Memory (KVM)

Besides VM there is a reserved area solely for
kernel tasks. On the common i386 architecture
(IA-32) the virtual address space is 4GB. The
OpenBSD/i386 kernel reserves 768MB since
the 3.2 release (formerly 512MB) of this space
for kernel structures, called KVM.

KVM is used for addressing the needs of man-
aging any hardware in the system and small
allocations6 being needed by syscalls. The
biggest chunks being used are the management
of the VM (RAM and swap), filesystem-cache
and storage of network buffers (mbuf).

Contrary to userland the kernel allocations can-

6like pathname translations

not be paged out (“wired pages”). Actually it’s
possible to have pageable kernel memory, but
this is rarely used (e. g. for pipe buffers) and
not a concern in the current context. Thus, if
the KVM is exhausted, the server will immedi-
atly crash. Of course 768MB is the limit, but if
there is less RAM available, this is the absolute
limit for wired pages then. Non-interrupt-safe
pages could be paged out, but this is a rare
exception.

Since RAM has to be managed by kernel maps
also, it’s not wise to just upgrade RAM without
need. More RAM leaves less space for other
maps in KVM. Monitoring the “really” needed
amount of RAM is recommended, if KVM ex-
haustions occur. For example, 128MB for a
firewall is usually more than enough. Look at
Section 7.2 for a typical hardware setup of a
busy firewall.

This complete area is called kernel map in the
source and has several “submaps”7. One main
reason for this is the locking of the address
space. By this mapping other areas of the
kernel can stay unlocked while another map is
locked.
Main submaps are kmem map, pager map,

mb map and exec map. The allocation is done
at boot-time and is never freed, the size is ei-
ther a compile-time or boot-time option to the
kernel.

4 Resource Allocation

Since the exhaustion of KVM is the most crit-
ical situation one can encounter, we will now
concentrate on how those memory areas are al-
located.

Userland applications cannot allocate KVM
needed for network routines directly. KVM is
protected from userland processes completely,
thus there have to be routines to pass data
over this border. The userland can use a
syscall(2) to accomplish that. For the case
of networking the process would use socket(2)
related calls, like bind(2), recv(2), etc.

Having this layer between userland and kernel,

7see /sys/uvm/uvm km.c

we will concentrate on how the kernel is allocat-
ing memory; the userland process has no direct
influence on this. The indirect influence is the
sending and receiving of data to or from the
kernel by the userland process. For example
the server handles a lot of incoming network
data, which will fill up buffer space (mbufs)
within the KVM. If the userland process is not
handling this data fast enough, KVM could be
exhausted. Of course the same is true if the
process is sending data faster than the kernel
can release it to the media, thus freeing KVM
buffers.

4.1 mbuf

Historically, BSD uses mbuf(9)8 routines to
handle network related data. An mbuf is a
data structure of fixed size of 256 bytes 9.
Since there is overhead for the mbuf header
(m hdr{}) itself, the payload is reduced by at
least 20 bytes and up to 40 bytes10.

Those additional 20 bytes overhead appear,
if the requested data doesn’t fit within two
mbufs. In such a case an external buffer, called
cluster, with a size of 2048 bytes11, is allocated
and referenced by the mbuf (m ext{}).

Mbufs belonging to one payload packet are
“chained” together by a pointer mh next.
mh nextpkt points to the next chain, forming
a queue of network data which can be pro-
cessed by the kernel. The first member of such
a chain has to be a “packet header” (mh type
M PKTHDR).

Allocation of mbufs and clusters are obtained
by macros (MGET, MCLGET, ..). Before
the release of OpenBSD 3.0 those macros used
malloc(9) to obtain memory resources.

If there were a call to MGET but no more space
is left in the corresponding memory map, the
kernel would panic12.

8memory buffer
9defined by MSIZE.

10see /usr/include/sys/mbuf.h for details.
11defined by MCLBYTES
12“malloc: out of space in kmem map”

4.2 pool

Nowadays OpenBSD uses pool(9) routines to
allocate kernel memory. This system is de-
signed for fast allocation (and freeing) of fixed-
size structures, like mbufs.

There are several advantages in using pool(9)

routines instead of the ones around malloc(9):

• faster than malloc by caching constructed
objects

• cache coloring (using offsets to more effi-
ciently use processor cache with real-world
hardware and programming techniques)

• avoids heavy fragmentation of available
memory, thus wasting less of it

• provides watermarks and callbacks, giving
feedback about pool usage over time

• only needs to be in kmem map if used from
interrupts

• can use different backend memory alloca-
tors per pool

• VM can reclaim free chunks before paging
occurs, not more than to a limit (Maxpg)
though

If userland applications are running on
OpenBSD (> 3.0), pool(9) routines will be
used automatically. But it’s interesting for peo-
ple who plan (or do so right now) to write own
kernel routines where using pool(9) could gain
significant performance improvements.

Additionally large chunks formerly in the
kmem map have been relocated to the ker-
nel map by using pools. Allocations for inodes,
vnodes, .. have been removed from kmem map,
thus there is more space for mbufs, which need
protection against interrupt reentrancy, if used
for e. g. incoming network data from the NIC
13.

13kmem map has to be protected by splvm(), see
spl(9).

5 Memory Measurement

Obviously one wants to know about memory
exhaustion before it occurs. Additionally it can
be of interest, which process or task is using
memory. There are several tools provided in
the base OpenBSD system for a rough moni-
toring of what is going on. For detailed anal-
ysis one has to be able to read and interpret
the values provided by those tools, but some-
times one needs more details and can rely on
3rd party tools then.

Example outputs of the tools mentioned can be
found in the Appendix.

5.1 Common tools

These are tools provided with OpenBSD, where
some are rather well-known, but some are not.
In any case, we have found that often the tools
are used in a wrong fashion or the outputs are
misinterpreted. It’s quite important to under-
stand what is printed out, even if it’s a “known
tool”.

top

One of the most used tools is top(1). It shows
the current memory usage of the system. In
detail one could see the following entries:

Real: 68M/117M act/tot, where 68MB are
currently used and another 49MB are allo-
cated, but not currently used and may be
subject to be freed.

Free: 3724K, shows the amount of free physical
RAM

Swap: 24M/256M used/tot, 24MB of 256MB
currently available swap space is used.

If one adds 3724kB to 117MB, the machine
would have nearly 122MB RAM. This is, of
course, not true. It has 128MB of RAM; the
“missing” 6MB are used as filesystem-cache14.

14dmesg: using 1658 buffers containing 6791168

bytes (6632K) of memory

Besides this rough look on the memory usage
of the system, there are indicators for other re-
source exhaustions. In the line CPU states:

there is an entry x.y% interrupt. See how to
resolve high values, they slow down the perfor-
mance.

Blocking disks can be detected in the WAIT col-
umn. For example an entry getblk shows that
the process is waiting for data from a disk (or
any other block device).

ps

Another very common tool is ps(1) and it’s
related to top(1). Where top(1) is usually
used for an overview of the system, one can use
ps(1) for detailed picking on the exact state of
a process (or process group).

Additionally it can be closer to reality and the
output is more flexible, thus one can do better
post-processing in scripts or similar.

Probably most interesting are the options
showing how much percentage CPU and VM
a process is using. One can sort by CPU (’u’)
or VM usage (’v’) to find a hogging process
quickly.

vmstat

vmstat(8) is the traditional “swiss army knife”
for detailed looks on the systems current usage.
It’s perfect for a first glance on potential bot-
tlenecks.

A vmstat-newbie will probably be baffled by
the output, but with some experience it’s
rather easy to find out, what’s happening and
where potential problems are located.

The default output consists of six areas (procs,
memory, page, disks, faults, cpu). Each areas
has columns for related values:

procs r b w, shows how many processes are
(r)unning, are being (b)locked or are
(w)aiting. Blocked processes cannot
change to running before the block is re-
solved, e. g. a process “hangs” in a getblk

state and waits for disk I/O.
Waiting means that the process is ready to
run, but has still not been scheduled, most
likely because the CPU is overloaded with
processes.

memory avm fre, number of pages (1024b)
being allocated and on the free list. The
avm value gives a better insight on the al-
location, than the values from top(1).

page flt re at pi po fr sr, page-in (pi)
and page-out (po) are most interesting
here. It indicates if, and how much, paging
(or even swapping) occurs.

disks sd0 cd0, the columns here depend on
the disk setup of course. Values are trans-
fer per seconds on this device. If high val-
ues here correspond with blocked processes
below procs this is a good indication that
the disk subsystem could be too slow.

faults in sys cs, can indicate too many in-
terrupts and context switches on the CPU.
sys counts syscalls brought to the kernel, a
rather hard value to interpret with regard
to bottlenecks, but one can get an idea of
how much traffic has to pass between user-
land and kernel for completing the task.

cpu us sy id, looked at separately not too in-
formative, but in combination with other
values it’s one keypoint in figuring out the
bottleneck. If processes are in ‘w’ state
and ‘id’ is very low, a CPU exhaustion oc-
curs. Processes being (b)locked and hav-
ing high (id)le values detect I/O exhaus-
tions. Having high (sy)stem values and
(w)aiting and/or (b)locked processes in-
dicate that the kernel is busy with itself
too much; this is usually because of “bad”
drivers. Compare to ‘faults in’ to find out
if interrupts are killing the performance.
If not it’s still possible that the CPU is
busy transfering blocks from disk devices,
indicated by low disk transfers and blocked
processes.

Already impressive diagnostic possibilities, but
vmstat(8) can show even more interesting
things.

Besides the options -i to show summaries
about interrupt behaviour and -s to get infor-
mation about the swap area, vmstat -m can

provide a very detailed look on the current
memory usage.

Like we already have shown OpenBSD uses
pool(9) for network data, thus we concentrate
now on the last chunk vmstat -m is reporting.
Most interesting are the lines mbpl and mclpl,
which represent the memory usage for mbufs
(mbpl) and clusters (mclpl).

Interesting columns are Size, Pgreq, Pgrel,

Npage and Maxpg. One can obtain the follow-
ing information from that:

Size the size of a pool item

Pgreq reports how many pages have ever been
allocated by this pool.

Pgrel the pool freed those pages to the sys-
tem.

Npage currently allocated/used pages by the
pool.

Maxpg maximum number of pages the pool
can use, even if paging would occur. More
precise: the pool can grow over this limit,
but the pagedaemon can reclaim free pages
being over this limit, if VM is running low.

netstat

Usually netstat(1) is used for gathering net-
work configurations, but it also provides infor-
mation about different memory usages.

netstat -f inet15 shows information about
current network activity. With regard to
memory consumption the columns Recv-Q and
Send-Q are of major interest.

Typically one will encounter entries in Send-
Q for a busy webserver with a good network
connection. Clients usually have significant
smaller bandwith, thus the provided data of the
webserver application cannot “leave” the sys-
tem. It’s getting queued on the network stack,
eating up mbuf clusters.

Pending requests will show up in Recv-Q, in-
dicating that the userland cannot process the
data as fast as it is coming in over the network.

15or -f inet6

The latter case should be resolved, even if mem-
ory is not running low, since the system would
appear sluggish to the client, which is usually
not appreciated (by the admin and/or client).

In addition to vmstat -m, netstat -m can re-
port further values about current mbuf and
cluster usage. Most notably it reports how
much memory is “really” used. vmstat -m

shows how many pool items are allocated, but
netstat -m then reports how many pool items
are actually filled with data to be processed.

In fact one could calculate this in vmstat

-m by substracting Releases from Requests,
but with numbers like 10599250 and 10599245,
this is not really practical. Another pitfall is
that vmstat -m reports memory pages, where
netstat -m reports pool items16 used, despite
its output of mapped pages in use.

Furthermore it splits up what type of, and how
many, mbufs are used (packet headers, sockets,
data, ..), and it gives a summary about how
much memory is needed by the network stack,
which would be rather tedious to calculate from
the vmstat -m output.

systat

This tool provides a top(1) like display of in-
formation the previous tools would provide.
Especially systat vmstat is a perfect overview
about load, disk usage, interrupts, CPU and
VM usage.

One can monitor the system in intervals, or col-
lect the information over time.

5.2 Special tools

Besides the tools we have shown so far, there
are additional possibilities to monitor the sys-
tem. symon and pftop are in the ports collec-
tion. KVMspy is not even published for now,
but it shows that it’s possible to write own tools
for specific monitorings without enormous ef-
fort17.

16usually a factor of two.
17the source code is below 300 lines.

symon

For monitoring overall resource usage over time
frames, symon [Dij02] is a perfect tool. It
queries the kernel via sysctl about common
resources. It uses rrdtool [Oet02] as data stor-
age backend. There is a data collector daemon,
called symon, which runs on every monitored
machine, sending the collected data to symux,
usually running on a central machine, which
stores them on disk. Additionally there is a
web-interface, symon-web, providing graphical
representation of the collected data.

After machines have been set up with detailed
analysis, this output is enough to detect high-
load situations and trigger countermeasures be-
fore exhaustion occurs.

If one wants a long-term analysis of detailed
data, it’s relativly easy to extend this tool.
Symon is pretty new and under active devel-
opment by Willem Dijkstra, but already very
useful.

pftop

If one wants to monitor specific areas, like
pf(4), pftop [Aca02] is a curses-based, real-
time monitoring application providing that.

One can consider it as a netstat-variant, provid-
ing similar information, about the paket filter.

KVMspy

For the absolute curious one, there will be
KVMspy. Currently it shows a bit more (off-
sets) information than vmstat -m about pools
and a bit less (only current and highwater).

But, for the interested hacker, this is maybe
better example code how to poll the ker-
nel states via kvm(3) routines. Queries via
sysctl(3) can be found in symon or are added
to KVMspy in the future.

6 Countermeasures

And finally we come to the interesting pieces.
Several ways to determine where a lack of KVM
resources occurs have been shown. So, what to
do if it actually happens?

There are three important kernel options defin-
ing the KVM layout with regard to networking.
NMBCLUSTERS and NKMEMPAGES are compile-
time options, but can be set via config(8) as
well. MAX KMAPENT can only be set at compile-
time.

6.1 NMBCLUSTERS

The maximum number of clusters for network
data can be defined here. Naturally, it’s diffi-
cult to calculate this value in advance. Most
tuning guides recommend a value of 8192 here.
We usually use this value, too.

People tend to raise this value further, not
knowing what implications this can have on
the system. A value of 8192 potentially uses
16MB for mb map: 8192 ∗ 2048 = 16777216
(MCLBYTES is usually 2048).

Since this is only a “pre-allocation” and not
real usage in the first place, this value can be
sane. On the other hand, if there are other
problems with KVM, this value may be low-
ered.

Looking at real-life usage of busy webservers
(see 7.1) the high watermark of mclpl is 524
(1048 clusters), thus even the default of 2048
clusters would be sufficient. This high wa-
termark (Hiwat in vmstat -m) is also perfect
to determine the mclpl size for load-balanced
servers.

Imagine a Hiwat of 1000 on both machines. If
one machine has to go out of service, due to a
crash or simply hardware maintenance, a pool
size of >4000 would ensure that the remaining
machine doesn’t run out of clusters. Remember
that vmstat -m reports pages, not items, thus
one has to calculate 1000∗2∗2 for NMBCLUSTERS.

Additionally it’s important to track why clus-
ters are used in larger numbers. We have shown

in 5.1/netstat that it is important to have a
quick passing from the Recv-Q to the server
application. It’s a better idea to improve the
application performance in this area, than in-
creasing NMBCLUSTERS and let the data sit in
KVM. At least a rather empty Recv-Q leaves
more space for the Send-Q, which cannot be
influenced directly to free clusters.

After all, it’s dangerous to use high-values for
this (and the following) options without very
detailed knowledge about what is happening in
the kernel. A “just to be safe” tuning can eas-
ily lead to an unstable machine. We have seen
people using a value of 65535 for NMBCLUSTERS,
rendering a pre-allocation of 128MB – not a
good idea and usually it doesn’t gain anything,
except problems. Think twice about those val-
ues.

6.2 NKMEMPAGES

This option defines the total size of kmem map.
Since this is not exclusively used for networking
data, it is a bit difficult to calculate the value
for this option.

Since kmem map was freed from other usage
(4.2) and the introduction of pool(9) ensures
that there is more space here for mbufs anyway,
so an exhaustion of kmem map is less likely than
before.

Tracking of the usage is still possible, though.
Looking again at
tt vmstat -m, this time at mbpl, one can see a
correlation between mbpl and mclpl. It’s com-
mon that the page value is usually half (or less)
the value from mclpl. Yet again, one has to
take care of “items vs page-size”. Mbufs are
way smaller then a cluster, thus 16 mbufs fit in
one page of memory.

A network connection using clusters needs at
least two mbufs, one for the paket header and
one for the reference to the cluster. Since not
every connection uses clusters it’s sane to as-
sume that a value for NKMEMPAGES being twice
the value of NMBCLUSTERS is a good starting
point.

Again, one should raise this value very care-
fully. Blindly changing these values can intro-

duce more problems, than are solved.

Additionally, if the option is not touched, the
kernel gets a sane default value for NKMEMPAGES
at compile-time, based on RAM available in the
system. If the kernel is compiled on a differ-
ent machine with a different amount of RAM,
this option should be used. A typical calcula-
tion value is 8162 for a machine with 128MB
of RAM; this can be determined by sysctl -n

vm.nkmempages.

6.3 MAX KMAPENT

Definition of the number of static entries in
kmem map. Like NKMEMPAGES, the value is cal-
culated at compile-time if unset. The default
of 1000 (at least, it is based on “maxusers”) is
usually enough.

Raising this value is discouraged, but could
be needed, if panics (uvm mapent alloc: out

of static map entries ..) occur. Usually
this happens if kmem map is highly fragmented,
for example by a lot of small allocations.

7 Real-life Examples

Putting everything together, we provide two
examples of machines running OpenBSD un-
der high load. It shows that a careful kernel
configuration and hardware selection has great
influence on the performance and reliability.

7.1 chat4free.de Webserver

This machine, hosted by BSWS, is running the
webserver for one of Germany’s biggest chat
systems, chat4free.de.

The site consists of static pages and public fo-
rums. The unusual problem here is the both
the overall load and the enormous peaks which
happen when numbers of users are discon-
nected from the chat server due to external net-
work problems or crashes of the server itself.
Unlike many web applications, this server has

a huge volume of small packets, which demon-
strates that loading is more an issue of users
and packet counts than raw data transfer.

Originally, it was running one Apache in-
stance for the entire application, on an 700MHz
Athlon system with 1.5G RAM, running a
highly modified OpenBSD 3.0. Unfortunately,
this system sometimes crashed due to KVM ex-
haustion.

To address this problem, the system was
switched to a new system, again an 700MHz
Athlon with 512M RAM, running two Apache
instances in chroot jails, on a fairly stock
OpenBSD 3.1 system. The system has a net-
work adapter based on a DEC/Intel 21143,
with a Seeq 84220 PHY, and runs ”headless”
with a serial console.

One of the two Apache instances is stripped
down as much as I could make it, and serves
the static pages. This httpd binary is only 303k
in size, compared to the almost 600k of the
stock Apache. The second instance of Apache
is much bigger, as it has PHP compiled in. I
always use static httpds, rather than Dynamic
Shared Objects (DSOs).

The kernel configuration is fairly stock. All
unused hardware support and emulations
are removed, option DUMMY NOPS is en-
abled. NMBCLUSTERS is bumped to 8192,
NKMEMPAGES to 16384. I considered raising
MAX KMAPENT from its default of 1000 to
1500 or so to be able to have even more concur-
rent Apache processes running, though there
has been no real need yet in this application.
The machine has an ordinary IDE hard disk for
the system, content and logs are on a separate
machine’s RAID subsystem, mounted via NFS.
Most static content ends up being cached, re-
ducing network traffic.

The ”lean” httpd instance is configured for up
to 1000 concurrent httpd tasks, the ”fat” one
for up to 600. I’ve seen both reach their max-
imum limits at the same time, and the smaller
machine handles this load without incident.
This is due to the superior memory manage-
ment in OpenBSD 3.1 and the smaller Apache
configurations.

Detailed kernel configuration and dmesg(8) can

be found in the Appendix.

7.2 A firewall at BSWS

One important fact about firewalling and filter-
ing is that the bandwidth isn’t the important
issue, the issue is the packet rate (i.e., pack-
ets per second). Each packet needs to be han-
dled by the network adapter, the TCP/IP stack
and the filter, which each need to do roughly
the same amount of work whether the packet
is small or large.

The firewall that protects a number of the
servers at BSWS is under rather heavy load,
not really due to total bandwidth, but the large
number of small packets involved. It is running
on a 700MHz Duron with 128M RAM and three
DEC/Intel 21143-based NICs (one is currently
not in use). It boots from a small IDE hard
disk, which is quite unimportant to this appli-
cation.

The machine is running a highly customized
version of OpenBSD. The base system is
OpenBSD 3.0, but many pieces of what be-
came OpenBSD 3.1 were imported, including
3.1’s packet filter pf(4). At the time this was
put together, there was no other option for this
application. Many of pf’s newer features were
needed, but it was not possible to wait for 3.1-
Release, as the previous OpenBSD 2.9 firewall
running IPFilter had saturated the processor at
near 100% utilization at peak usage times, and
delays were being noticed. The kernel config-
uration has had all uneeded hardware support
and binary emulations removed, and the always
famous NKMEMCLUSTERS=16384 and NM-
BCLUSTERS=8192 modifications. The num-
ber of VLAN interfaces was raised to 20 (from
2 in GENERIC).

As of October 5, the expanded ruleset has 1132
rules. The “quick” keyword is used in most
places to reduce the number of rules that must
be evaluated for each packet, otherwise the en-
tire ruleset must be evaluated for each packet.
The rules are ordered so that the ones I ex-
pect the most matches from are towards the
top of the file. All pass rules keep state; not
only is this good practice for security, but with
pf, state table lookups are usually much faster
than rule evaluation. No NAT takes place on

this machine, only packet filtering.

On the external interface, there is only spoofing
protection taking place. Incoming packets with
a source IP of the internal networks, outgoing
packets with an IP which is not from one of the
internal networks, and all 127.0.0.0/8 traffic is
dropped. Normally, one would also drop pack-
ets with RFC1918 (”private IP space”), how-
ever in this case, it is handled externally by
the BSWS core routers, because there is valid
traffic with RFC1918 IPs from other internal
networks crossing this firewall.

The actual filtering policies are enforced on the
inside (VLAN) interfaces, which has the ben-
efit that packets attempting to cross between
VLANs encounter the same rules as packets
from the outside. Every packet passing the
firewall is normalized using the scrub direc-
tive. OpenBSD 3.2 will support multiple scrub
methods besides the classic buffering fragment
cache. One of the more interesting is the
crop method, which almost completely avoids
buffering fragments.

The results have been impressive. In Septem-
ber, 2002, the state table reached a peak size
of 29,390, with an average size of 11,000. Up
to 15,330 state table lookups per second were
performed with average of 5600. State table in-
serts and removals peaked at slightly over 200
per second each. The CPU load seldom exceeds
10%. Compare this to the old IPFilter solution
running on the same hardware doing much the
same task, where the CPU was maxed out with
only 600 rules and a peak of 15,000 packets per
second. pf has permitted considerable growth
in the complexity of the rule sets and traffic,
and as you can see, still leaves BSWS consider-
able room to grow. Since this firewall went into
operation in March, 2002, there hasn’t been a
single problem with its hardware or software.

8 Conclusions

Running OpenBSD servers under high load is
pretty safe nowadays. We have shown that the
introduction of pool(9) made operation way
better with regard to memory usage and per-
formance.

We have shown how network traffic influences
the memory usage of the kernel and how the
pieces are related together.

The provided knowledge about monitoring a
running system and potential countermeasures
against resource exhaustions should help to
deal with high-load situations better.

9 Acknowledgements

A big “thank you” goes to Nick Holland, who
turned our crappy english into something useful
and provided a lot of input on how to explain
this difficult area better.

Thanks also to Artur Grabowski for imple-
menting pool(9) in the OpenBSD kernel and
for further explanations about KVM.

Several proof-readers helped on finding spelling
errors and inconsistencies within the paper, a
special thanks here for Daniel Lucq, who also
wrote KVMspy.

And, of course, thanks to the OpenBSD de-
veloper team for working on a system which
provides already sane defaults for operating a
high-load server, and, not to forget, a very high
level of security.

References

[Aca02] Can E. Acar. Openbsd pf state viewer.
http://www.eee.metu.edu.tr/
˜canacar/pftop/, 2002.

[Dij02] Willem Dijkstra. The small and
secure active system monitor.
http://www.xs4all.nl/˜wpd/symon/,
2002.

[McK96] Marshall Kirk (et. al.) McKusick. The de-
sign and implementation of the 4.4BSD
operating system. Addison-Wesley, 1996.

[Oet02] Tobi Oetiker. Round robin database.
http://people.ee.ethz.ch/
˜oetiker/webtools/rrdtool/, 2002.

[Ope02] OpenBSD. http://www.openbsd.org/,
2002.

[Ste94] W. Richard Stevens. TCP/IP Illustrated,
Vol. 2. Addison-Wesley, 1994.

A top

This machine is the main server of sysfive.com GmbH, slightly tuned it is really idle.

load averages: 0.19, 0.12, 0.09 14:19:57

68 processes: 1 running, 64 idle, 3 zombie

CPU states: 0.3% user, 0.9% nice, 0.3% system, 0.0% interrupt, 98.4% idle

Memory: Real: 49M/80M act/tot Free: 41M Swap: 0K/256M used/tot

PID USERNAME PRI NICE SIZE RES STATE WAIT TIME CPU COMMAND

15902 root 2 0 2308K 1832K idle select 19:39 0.00% isakmpd

27679 pb 2 0 964K 1468K sleep select 7:00 0.00% screen-3.9.11

19945 gowry 2 0 4644K 5096K idle select 4:30 0.00% screen-3.9.11

3605 postfix 2 0 304K 736K sleep select 4:29 0.00% qmgr

22360 root 18 0 640K 9944K sleep pause 2:53 0.00% ntpd

11827 pb 2 0 516K 1312K sleep poll 2:18 0.00% stunnel

[..]

B ps

Same machine, same processes reported by ps -axv

USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND

root 22360 0.0 7.6 640 9944 ?? Ss 8Aug02 2:48.24 ntpd -c /etc/ntp.conf

gowry 19945 0.0 3.9 4644 5096 ?? Ss 9Aug02 4:30.56 SCREEN (screen-3.9.11)

root 15902 0.0 1.4 2308 1832 ?? Is 31Jul02 19:39.33 isakmpd

pb 27679 0.0 1.1 964 1468 ?? Ss 13Jul02 6:59.75 SCREEN (screen-3.9.11)

pb 11827 0.0 1.0 516 1312 ?? Ss 13Jul02 2:15.55 stunnel

postfix 3605 0.0 0.6 304 736 ?? S 6Aug02 4:30.29 qmgr -l -t fifo -u

C vmstat

Current vmstat output of the same machine (vmstat 1 5)

procs memory page disks faults cpu

r b w avm fre flt re pi po fr sr cd0 sd0 in sy cs us sy id

1 0 0 50324 41608 14 0 0 0 0 0 0 1 234 7151 160 0 0 99

0 0 0 50324 41608 10 0 0 0 0 0 0 0 233 1602 165 0 0 100

0 0 0 50324 41608 6 0 0 0 0 0 0 0 233 1589 165 0 1 99

If the machine would have disk I/O blocking problems, the output could look like this. Note the idle CPU,
but blocked processes are waiting for blocks from the busy drive.

procs memory page disks faults cpu

r b w avm fre flt re pi po fr sr cd0 sd0 in sy cs us sy id

1 2 0 50324 41608 14 0 0 0 0 0 0 271 234 7151 160 1 3 96

0 1 0 50324 41608 10 0 0 0 0 0 0 312 233 1602 165 0 4 96

0 1 0 50324 41608 6 0 0 0 0 0 0 150 233 1589 165 0 2 98

Worst-case scenario, the machine does heavy paging, thus overloading the disk subsystem. Additionally
the CPU is maxed out. Processes are waiting, interrupts cause massive context-switching. The values are
arbitrary.

procs memory page disks faults cpu

r b w avm fre flt re pi po fr sr cd0 sd0 in sy cs us sy id

1 2 1 324 608 314 0 25 35 0 0 0 271 412 7151 1931 80 19 1

1 3 2 324 608 310 0 28 42 0 0 0 312 501 1602 1876 81 19 0

1 2 1 324 608 306 0 21 38 0 0 0 150 467 1589 1911 85 12 3

Now let’s have a look at the pool situation of a firewall. A nice example that the pool can grow over the
initial limit (Maxpg 512, Hiwat 516), but somehow KVM is low, since a lot of requests are failing (Fail
14725). The kernel should be reconfigured with NMBCLUSTERS > 1024 (vmstat -m | grep mclpl).

Name Size Requests Fail Releases Pgreq Pgrel Npage Hiwat Minpg Maxpg Idle

mclpl 2048 1758499 14725 1757480 518 2 516 516 4 512 4

D netstat

All packet data is getting delivered to/from the sshd fast enough, so no queuing occurs.

Active Internet connections

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp 0 0 172.23.1.1.22 10.172.2.32.1156 ESTABLISHED

tcp 0 0 172.23.1.1.22 172.23.1.3.39679 ESTABLISHED

tcp 0 0 172.23.1.1.22 192.168.1.5.42456 ESTABLISHED

Somehow either the uplink is saturated, or the remote clients are not retrieving data fast enough, thus the
Send-Q is growing.

Active Internet connections

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp 0 5346 172.23.1.1.22 10.172.2.32.1156 ESTABLISHED

tcp 0 0 172.23.1.1.22 172.23.1.3.39679 ESTABLISHED

tcp 0 7159 172.23.1.1.22 192.168.1.5.42456 ESTABLISHED

For whatever reason, sshd is not processing data fast enough. Maybe the deciphering needs more CPU
then available?

Active Internet connections

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp 8811 0 172.23.1.1.22 10.172.2.32.1156 ESTABLISHED

tcp 5820 0 172.23.1.1.22 172.23.1.3.39679 ESTABLISHED

tcp 11631 0 172.23.1.1.22 192.168.1.5.42456 ESTABLISHED

Let’s have a look at the memory usage with netstat -m. The stack has to keep 85 clusters in KVM,
somehow the application is processing data either too fast (Send-Q) or too slow (Recv-Q).

384 mbufs in use:

100 mbufs allocated to data

178 mbufs allocated to packet headers

106 mbufs allocated to socket names and addresses

85/1048 mapped pages in use

3144 Kbytes allocated to network (8% in use)

0 requests for memory denied

0 requests for memory delayed

0 calls to protocol drain routines

E systat

Looks like the machine is doing nothing? Wrong, look at the interrupt counting for dc0 and dc2. It’s the
BSWS’ firewall described earlier.

1 users Load 0.05 0.08 0.08 Sat Oct 5 17:22:05 2002

memory totals (in KB) PAGING SWAPPING Interrupts

real virtual free in out in out 7903 total

Active 91472 93712 10848 ops 100 clock

All 116216 118456 270684 pages pccom0

128 rtc

Proc:r d s w Csw Trp Sys Int Sof Flt forks 3669 dc0

1 9 6 5 21 7936 4 2 fkppw dc1

fksvm pciide0

0.0% Sys 0.0% User 0.0% Nice 90.0% Idle pwait 4006 dc2

| | | | | | | | | | | relck

rlkok

noram

Namei Sys-cache Proc-cache No-cache ndcpy

Calls hits % hits % miss % fltcp

2 2 100 zfod

cow

Discs wd0 128 fmin

seeks 170 ftarg

xfers 8446 itarg

Kbyte 39 wired

sec pdfre

pdscn

F iostat

Medium, but constant, traffic on sd0. In fact I was generating traffic with dd(1).

tty cd0 sd0 sd1 fd0 cpu

tin tout KB/t t/s MB/s KB/t t/s MB/s KB/t t/s MB/s KB/t t/s MB/s us ni sy in id

0 540 0.00 0 0.00 0.50 2614 1.28 0.00 0 0.00 0.00 0 0.00 1 1 5 3 90

0 179 0.00 0 0.00 0.50 2560 1.25 0.00 0 0.00 0.00 0 0.00 0 0 2 2 95

0 344 0.00 0 0.00 0.50 2601 1.27 0.00 0 0.00 0.00 0 0.00 0 0 3 5 92

0 181 0.00 0 0.00 0.50 2601 1.27 0.00 0 0.00 0.00 0 0.00 0 1 5 3 91

G pftop

Easy and quick overview about current traffic filtering:

pfTop: Up State 1-3/64, View: default, Order: none

PR DIR SRC DEST STATE AGE EXP PKTS BYTES

icmp Out 192.168.100.32:361 192.168.100.22:361 0:0 9 1 2 96

icmp Out 192.168.100.32:361 192.168.100.23:361 0:0 9 1 2 96

tcp In 192.168.100.7:1029 192.168.100.32:443 4:4 4165 86302 25871 9251K

H KVMspy

The full output would be too long, thus shortened to relevant pools/maps. Somehow this machine is not
really exhausted, even with the default settings.

_kmem_map @ 0xd0518cdc: total size = 33431552 bytes, [0xd0890000, 0xd2872000]

_kmem_map @ 0xd0518cdc: 103 entries, actual size = 2453504 bytes (7.34%)

_mb_map @ 0xd0890c00: total size = 4194304 bytes, [0xda63e000, 0xdaa3e000]

_mb_map @ 0xd0890c00: 5 entries, actual size = 118784 bytes (2.83%)

_socket_pool @ 0xd05424c8: currently has 6 pages (24576 bytes)

_socket_pool @ 0xd05424c8: high water mark of 12 pages (49152 bytes)

_nkmempages @ 0xd05029d4: 8162 (_nkmempages * PAGE_SIZE = 33431552 bytes)

_nmbclust @ 0xd04fb278: 2048 (_nmbclust * MCLBYTES = 4194304 bytes)

I chat4free.de Webserver

I’m using a bit more aggressive timeouts on this machine to lower the number of concurrent connections.
This inlcudes a shortened KeepAliveTimeout to 10 seconds in apache’s config and the following addition
to /etc/sysctl.conf:

net.inet.tcp.keepinittime=10

net.inet.tcp.keepidle=30

net.inet.tcp.keepintvl=30

net.inet.tcp.rstppslimit=400

net.inet.ip.redirect=0

net.inet.ip.maxqueue=1000

kern.somaxconn=256

The timeouts depend heavily on your usage profile and need to be tried. The above ones work fine here,
and should fit for most well connected webservers.
dmesg:

OpenBSD 3.1 (windu) #0: Wed Apr 17 20:10:40 CEST 2002

root@ozzel:/usr/src/sys/arch/i386/compile/windu

cpu0: AMD Athlon Model 4 (Thunderbird) ("AuthenticAMD" 686-class) 700 MHz

cpu0: FPU,V86,DE,PSE,TSC,MSR,PAE,MCE,CX8,APIC,SYS,MTRR,PGE,MCA,CMOV,PAT,PSE36,MMX,FXSR

real mem = 536457216 (523884K)

avail mem = 494899200 (483300K)

using 5689 buffers containing 26927104 bytes (26296K) of memory

mainbus0 (root)

bios0 at mainbus0: AT/286+(86) BIOS, date 04/02/02, BIOS32 rev. 0 @ 0xfb210

apm0 at bios0: Power Management spec V1.2

apm0: AC on, battery charge unknown

pcibios0 at bios0: rev. 2.1 @ 0xf0000/0xb690

pcibios0: PCI IRQ Routing Table rev. 1.0 @ 0xfdbd0/176 (9 entries)

pcibios0: PCI Exclusive IRQs: 11

pcibios0: PCI Interrupt Router at 000:07:0 ("VIA VT82C596A PCI-ISA" rev 0x00)

pcibios0: PCI bus #1 is the last bus

pci0 at mainbus0 bus 0: configuration mode 1 (no bios)

pchb0 at pci0 dev 0 function 0 "VIA VT8363 Host" rev 0x03

ppb0 at pci0 dev 1 function 0 "VIA VT8363 PCI-AGP" rev 0x00

pci1 at ppb0 bus 1

pcib0 at pci0 dev 7 function 0 "VIA VT82C686 PCI-ISA" rev 0x40

pciide0 at pci0 dev 7 function 1 "VIA VT82C571 IDE" rev 0x06: ATA100, channel 0

\configured to compatibility, channel 1 configured to compatibility

wd0 at pciide0 channel 0 drive 0: <IC35L060AVER07-0>

wd0: 16-sector PIO, LBA, 58644MB, 16383 cyl, 16 head, 63 sec, 120103200 sectors

wd0(pciide0:0:0): using PIO mode 4, Ultra-DMA mode 5

pchb1 at pci0 dev 7 function 4 "VIA VT82C686 SMBus" rev 0x40

dc0 at pci0 dev 8 function 0 "DEC 21142/3" rev 0x41: irq 11 address 00:00:cb:53:62:c3

sqphy0 at dc0 phy 17: Seeq 84220 10/100 media interface, rev. 0

isa0 at pcib0

isadma0 at isa0

pckbc0 at isa0 port 0x60/5

pckbd0 at pckbc0 (kbd slot)

pckbc0: using irq 1 for kbd slot

wskbd0 at pckbd0: console keyboard

pcppi0 at isa0 port 0x61

sysbeep0 at pcppi0

npx0 at isa0 port 0xf0/16: using exception 16

pccom0 at isa0 port 0x3f8/8 irq 4: ns16550a, 16 byte fifo

pccom0: console

pccom1 at isa0 port 0x2f8/8 irq 3: ns16550a, 16 byte fifo

biomask 4000 netmask 4800 ttymask 4802

pctr: user-level cycle counter enabled

mtrr: Pentium Pro MTRR support

dkcsum: wd0 matched BIOS disk 80

root on wd0a

rootdev=0x0 rrootdev=0x300 rawdev=0x302

Kernel config:

machine i386 # architecture, used by config; REQUIRED

option DIAGNOSTIC # internal consistency checks

option CRYPTO # Cryptographic framework

option SYSVMSG # System V-like message queues

option SYSVSEM # System V-like semaphores

option SYSVSHM # System V-like memory sharing

option FFS # UFS

option FFS_SOFTUPDATES # Soft updates

option QUOTA # UFS quotas

option MFS # memory file system

option TCP_SACK # Selective Acknowledgements for TCP

option NFSCLIENT # Network File System client

option NFSSERVER # Network File System server

option FIFO # FIFOs; RECOMMENDED

option KERNFS # /kern

option NULLFS # loopback file system

option UMAPFS # NULLFS + uid and gid remapping

option INET # IP + ICMP + TCP + UDP

option INET6 # IPv6 (needs INET)

option PULLDOWN_TEST # use m_pulldown for IPv6 packet parsing

pseudo-device pf 1 # packet filter

pseudo-device pflog 1 # pf log if

pseudo-device loop 2 # network loopback

pseudo-device bpfilter 8 # packet filter

pseudo-device vlan 2 # IEEE 802.1Q VLAN

pseudo-device pty 64 # pseudo-terminals

pseudo-device tb 1 # tablet line discipline

pseudo-device vnd 4 # paging to files

#pseudo-device ccd 4 # concatenated disk devices

pseudo-device ksyms 1 # kernel symbols device

option BOOT_CONFIG # add support for boot -c

option I686_CPU

option USER_PCICONF # user-space PCI configuration

option DUMMY_NOPS # speed hack; recommended

option COMPAT_LINUX # binary compatibility with Linux

option COMPAT_BSDOS # binary compatibility with BSD/OS

option NMBCLUSTERS=8192

option NKMEMPAGES=16384

maxusers 64 # estimated number of users

config bsd swap generic

mainbus0 at root

bios0 at mainbus0

apm0 at bios0 flags 0x0000 # flags 0x0101 to force protocol version 1.1

pcibios0 at bios0 flags 0x0000 # use 0x30 for a total verbose

isa0 at mainbus0

isa0 at pcib?

pci* at mainbus0 bus ?

option PCIVERBOSE

pchb* at pci? dev ? function ? # PCI-Host bridges

ppb* at pci? dev ? function ? # PCI-PCI bridges

pci* at ppb? bus ?

pci* at pchb? bus ?

pcib* at pci? dev ? function ? # PCI-ISA bridge

npx0 at isa? port 0xf0 irq 13 # math coprocessor

isadma0 at isa?

isapnp0 at isa?

option WSDISPLAY_COMPAT_USL # VT handling

option WSDISPLAY_COMPAT_RAWKBD # can get raw scancodes

option WSDISPLAY_DEFAULTSCREENS=6

option WSDISPLAY_COMPAT_PCVT # emulate some ioctls

pckbc0 at isa? # PC keyboard controller

pckbd* at pckbc? # PC keyboard

vga* at pci? dev ? function ?

wsdisplay* at vga? console ?

wskbd* at pckbd? console ?

pcppi0 at isa?

sysbeep0 at pcppi?

pccom0 at isa? port 0x3f8 irq 4 # standard PC serial ports

pccom1 at isa? port 0x2f8 irq 3

pciide* at pci ? dev ? function ? flags 0x0000

wd* at pciide? channel ? drive ? flags 0x0000

dc* at pci? dev ? function ? # 21143, "tulip" clone ethernet

sqphy* at mii? phy ? # Seeq 8x220 PHYs

pseudo-device pctr 1

pseudo-device mtrr 1 # Memory range attributes control

pseudo-device sequencer 1

pseudo-device wsmux 2

pseudo-device crypto 1

